Robert Sutton: Top Tories on Twitter. Case Study 1) Rishi Sunak

29 Jun

Rob Sutton is an incoming junior doctor in Wales and a former Parliamentary staffer. He is a recent graduate of the University of Oxford Medical School.

It seems unsurprising that Chancellor of the Exchequer Rishi Sunak has done well in the rankings. He is behind only Boris Johnson and Theresa May, and given his emergence as a leading figure in the Government’s coronavirus response (Matt Hancock has also done well, ranked five), the ranking seems a fair recognition of his prominence.

He is a long way ahead of his most recent predecessor, Sajid Javid (ranked 8), and despite Jacob Rees-Mogg having almost 60,000 more followers, Sunak ranks a place ahead of him. This is a reflection of the speed of Sunak’s ascent, having only been in Parliament since 2015, half the time as Rees-Mogg.

Highly-respected within the party, Sunak is a stylish figure with a talent for managing the optics of his job. A consistently solid performer during the Covid-19 daily briefings, he laid out the Government’s economic response to the crisis with a confidence and reassurance which has calmed the public and financial markets.

He has worked hard to develop his social media brand, hiring a talented media special adviser, Cass Horowitz, to help craft his image and achieve broader engagement. He balances seriousness with an ease which many of his older and greyer colleagues lack.

He can be light-hearted when necessary and is able to engage in a manner few previous Chancellors have shown. Even when his attempts backfire (see the “Yorkshire tea” fiasco) they generate discussion and media interest.

The challenge for Sunak will be whether he can carry over his current popularity in a post-coronavirus Treasury. His ascent has been so quick that he had relatively little time to make enemies. It remains to be seen whether this will continue as he is inevitably forced to tighten the purse strings.

Rob Sutton: Introducing the top 50 Conservative MPs on Twitter

29 Jun

Conservative MP Twitter power rankings: the top 50

Rob Sutton is an incoming junior doctor in Wales and a former Parliamentary staffer. He is a recent graduate of the University of Oxford Medical School.

Amongst the social media giants, Twitter is the primary battleground for political discourse. It’s also one of the key avenues by which MPs convey their message, and has near-universal uptake by members in the current House of Commons.

The effectiveness with which Twitter is utilised varies considerably between MPs, but it is difficult to compare like-for-like. How does one take into account the differences between, for instance, a freshman MP and a veteran Cabinet member? Length of service in Parliament and ministerial rank give a considerable advantage when building a following.

In this article, I have compiled a power ranking of MPs in the current Parliament, with the top 50 shown in the chart above. The MP’s follower count was adjusted by factoring in their previous experience, to better reflect the strength of their following and their success at engagement on the platform.

Being Twitter-savvy is about more than just a high follower count: any Secretary of State can achieve this just by virtue of the media exposure their office brings. Building a Twitter following based on thoughtful commentary and authentic engagement requires skill ,and can be achieved by members across all Parliamentary intakes and ranks of Government.

Though the top 10 is still dominated by MPs holding senior ministerial offices, the composition of the list beyond it is far more variable. A number of prominent backbenchers are in the top 20, and four members from the 2019 intake make the top 50, beating longer-serving and higher-ranked colleagues.

I hope that this list serves as recognition of the skill and contribution by Conservative members to public debate and engagement, beyond ministerial duties which so often dominate any mention in the media.

Building a model of Twitter power rankings

Success is judged by number of followers, with higher follower counts indicating greater influence on Twitter. The follower count was adjusted using three key parameters:

  • The number of years since an MP was first elected to Parliament.
  • The number of years the MP’s Twitter account has been active.
  • Their highest rank within Government achieved since 2010.

Higher values for each of these would be expected to contribute to a higher follower count. I built a model using the open-source Scikit-Learn package, and fitted it to data from the current Parliament.

The model was then used to predict how many followers a given MP might expect to have based on these three factors. The steps taken to produce a final “Twitter power score” were thus as follows:

  • Using these three factors, multiple linear regression was used to calculate the expected number of Twitter followers an MP might have.
  • Their true follower count was divided by the expected follower count to produce a single number which represented the MP’s performance at building a following.
  • Finally, a logarithm was taken of this ratio to make the number more manageable and to produce a final Twitter power score.

The final step of taking a logarithm means it is easier to compare between MPs without those who have very high follower counts (such as Boris Johnson) making the data difficult to compare, but it does not affect the order of the ranking.

Compiling the data

Having decided which factors to correct the model for, I collected the required information. All three factors were easy to find reliable sources for. The Twitter page for each MP displays the date the account was created, and the Parliamentary website provides the date of their first election to Parliament and previous government posts.

Members who are newly returned to the backbenches following governmental duties (such as Sajid Javid and Jeremy Hunt) are scored at their highest government rank since 2010 to recognise this. I was able to find the Twitter accounts and required information for 319 Conservative MPs who were included in this ranking.

To build a model based on this data required incorporating the highest government rank numerically. To do this, I assigned scores according to their rank. These grades recognised their relative seniority and media exposure associated with the office, with higher scores assigned to more senior positions:

  • Prime Ministers, Secretaries of State, Speakers, Leaders of the House and Chief Whips are scored 3.
  • Ministers of State, Deputy Speakers and Deputy Chief Whips are scored 1.
    Parliamentary Under-Secretaries of State, Parliamentary Private Secretaries and Whips are scored 0.5.
  • Backbenchers score 0.

When assigning these values, I considered the typical sizes of follower counts of MPs in each category. When comparing Secretaries of States to Ministers of State, the median follower count is around twice the size, but the mean follower count is around eight times the size, as a handful of very large follower count skews the results upwards.

Deciding on weightings requires a (somewhat arbitrary) decision as to which measures to use when comparing between groups, and the scores I decided on were ultimately chosen as a compromise across these different measures, which produced stable results when used in the model.

It is also worth explaining why Prime Ministers are grouped with Secretaries of State, despite the far higher media exposure and seniority of their post. When deciding on the respective weighting for different levels of government post, a sufficiently large pool of MPs was needed to produce a meaningful comparison. The only data points for comparison of Prime Ministers are Boris Johnson and Theresa May, so it is difficult to give them their own weighting without it being either unreliable or arbitrary.

While grouping them with Secretaries of State and other senior positions might be perceived as giving them an unfair advantage in the weighting, I felt it justified given these challenges in determining the “fair” weight to assign them. With this done, I had three parameters for each MP on which to build a model to calculate the expected number of Twitter followers.

Calculating the number of expected Twitter followers

I built a model to calculate the expected number of Twitter followers using the Scikit-Learn, a popular machine learning package in the Python programming language. The model used multiple linear regression to fit the input parameters to the known follower count.

The input data was prepared by removing extreme high outliers in the data which skewed the fit toward high numbers and away from the vast majority of MPs before fitting. Once fitted, an “expected value” of Twitter followers could be calculated for each MP, based on the year of their first election to parliament, the number of years on Twitter and their highest government rank since 2010.

Including more parameters increases the ability of the model to describe the difference between MPs’ follower counts (the variability). By increasing the number of input variables included in the model, more of the variability is captured:

  • One variable captures between 20.3 per cent and 36.1 per cent of the variability.
  • Two variables capture between 39.1 per cent and 43.1 per cent of the variability.
  • All three variables capture 48.7 per cent of the variability.

These three variables are therefore responsible for almost half of the variation between MPs in their follower counts. The remainder of the variability is likely due to a range of factors which the model does not include, of which the MP’s Twitter-savviness is of particular interest to us. I discuss these factors further below.

Limitations in the model

There are multiple other parameters which could be included in future iterations which I did not include in this model. In particular:

  • Membership or Chairmanship of Select Committees.
  • Previous election to a council, assembly, devolved legislature or the European Parliament.
  • Membership of the Privy Council.
  • Government positions prior to 2010.
  • Prominent positions within the Conservative Party, such as the 1922 Committee or European Research Group.
  • Twitter-savviness and effectiveness of their comms team.

Another limitation was not accounting for the perceived relative importance of various governmental departments: a Great Office of State or Prime Minister is scored the same as any other Secretary of State. The difficulties involved in ranking governmental departments were beyond this first model. The length of service in a given government post was also not considered.

Finally, the choice of model to fit the data may not be the optimal choice. Multiple linear regression assumes, per the name, that the distribution is linear. But the large outliers might be better described by a power law or Pareto distribution, or the non-linearities of a neural network.

During next week, ConservativeHome will produce profiles of six individual MPs who have performed notably well in the power rankings, and who reflect the contributions brought by members beyond their ministerial duties, if they have any.